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A dataset has an Arrow Of Time if  has a consistent sign∂↔
CE

∂↔
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• Dataset: CC100 (> 30 Gb of text per language)


• Tokenization: Byte-Pair Encoding, recomputed for each language


• Model: GPT2-Medium (~350M params), 256-token context length
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AoT for Languages
Key takeaways (from 100+ experiments)

• AoT  increases with context length∂↔
CE

Long-range correlations essential

• AoT  increases with model size∂↔
CE

AoT origin semantic, rather than grammatical

•  AoT universal across architectures (we tested 
LSTMs, GRUs, GPTs)

As models get stronger, AoT increases

• FW AoT universality across languages (we tested 11)
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via Computational Hardness

• Consider a dataset of the form  with  primesp1 × p2 = n p1 < p2

• Theoretical FW and BW cross-entropy losses match, as they should:

• For FW, LHS determines RHS, for BW, RHS determines LHS

• For the FW model to do well, it needs to learn to multiply p1, p2

Transformers can learn to do this

• For the BW model to do well, needs to learn to factor n

Computationally hard, likely not computable by a neural network

• Consequence  AoT in this dataset→

151 × 353 = 053303
367 × 593 = 217631
463 × 997 = 461611

Examples:

p1 × p2 = n
FW 

BW 
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Emergence of AoT
via Learnability Asymmetry
• Example: Linear Languages

• Dataset , with  and  both random -bit stringsx : y x y m

• ,  related by invertible matrices  over the field x y A⇆ 𝔽2

• ,     ,  and  y = A→x x = A←y A← = (A→)−1

• FW model learns , BW model learns A→ A←

• Sparser matrices are easier to learn 

• Symmetry breaking :  sparse   typically less sparse  AoT!A→ ⟹ A← →

• Also for fine-tuning:  sparse   less sparseA→ − ̂A→ ⟹ A← − ̂A←

010101 : 101110
Examples:

011001 : 110101
100010 : 011101
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Theory of AoT
Time Symmetry Breaking in Language

• Say Alice and Bob (humans) both speak (and think) forward

• Consider also Carol (an alien) who speaks backwards.

• Alice, Bob, and Carol all share a common language

• Alice will only share forward-sparse modifications of the language 
to Bob: that’s all he can learn easily.

• For Carol, things are harder: the update is not as backward-sparse.

• AoT emerges from the selection process: 

• Alice only communicates sparse-forward updates (because that’s 
what is easy for Bob); typically Carol struggles more. 
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CE > 0

• AoT on other types of data (code, binaries, DNA, animal sounds)?

• Relation with AoT in thermodynamics?

• AoT link with causality?

• Are there less data-intensive ways to detect an AoT?

• Scaling laws for ?∂↔
CE

Thank you for your attention!
Hopefully, this talk was sparse in your favorite time direction!✓ ?


