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» Models are trained with Cross-Entropy loss £

Summing the losses of n tokens, we get:
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Prediction and Entropy of Printed English
By C. E. SHANNON

(ManuscriptReceived Sept. 15, rg50)

A new method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are

developed.
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~r quantifies differences in learned P~ and P

A dataset has an Arrow Of Time if -, has a consistent sign

cr >0 = Forward Arrow Of Time
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Natural Language Experiments

 Dataset: CC100 (> 30 Gb of text per language)
* Jokenization: Byte-Pair Encoding, recomputed for each language

 Model: GPT2-Medium (~350M params), 256-token context length
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via Computational Hardness Examples:
151 X 353 = 053303
« Consider a dataset of the form p, X p, = n with p, < p, primes B <03 — 517631

* Theoretical F\W and BVV cross-entropy losses match, as they should: 463 X 997 = 461611

e For FW, LHS determines RHS, for BW, RHS determines LHS FW
For the F\W del to d I, it ds to | t ltipl .
e Forthe model to do well, it needs to learn to multiply p, p it
1> P2 pl )(p2 el 4
> Transformers can learn to do this B
BW

e For the B\VW model to do well, needs to learn to factor n

> Computationally hard, likely not computable by a neural network

« Consequence — AoT in this dataset
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Emergence of Aol
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via Learnability Asymmetry 011001 : 110101
« Example: Linear Languages 100010 : 011101

j>«:j (vn-spacty) off A vs A~

« Dataset x : y, with x and y both random m-Dbit strings

~

b T for 3030 mabies )
. x, y related by invertible matrices A= over the field I {
e y=Ax, _x=ASy and A5 = —g el R
e F\W model learns A, model learns A * ;;;
e Sparser matrices are easier to learn » ' R

» Symmetry breaking : A~ sparse =—> A typically less sparse — AoT!

A\

e Also for fine-tuning: A~ — A7 sparse =—> A — A< less sparse
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Time Symmetry Breaking in Language n

e Say Alice and Bob (humans) both speak (and think) forward

sparseg
— &R

~

* Alice will only share forward-sparse modifications of the language @
to Bob: that’s all he can learn easily. ‘

* For Carol, things are harder: the update is not as backward-sparse.

 Consider also Carol (an alien) who speaks backwards. (?

* Alice, Bob, and Carol all share a common language ®

Aol emerges from the selection process:

* Alice only communicates sparse-forward updates (because that’s
what is easy for Bob); typically Carol struggles more.
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» Is d;, > 0 linked with intelligence, life?

Aol on other types of data (code, binaries, DNA, animal sounds)?
e Relation with AoT in thermodynamics?
* AoT link with causality?

* Are there less data-intensive ways to detect an AoT?

: >
» Scaling laws for 0?

4

.@.‘/ Thank you for your attention! ?@
n Hopefully, this talk was sparse in your favorite time direction! n




